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Abstract

In this paper we optimize the performance of several classes of simple flow systems consisting of T- and Y-shaped assemblies of ducts,
channels and streams. In each case, the objective is to identify the geometric configuration that maximizes performance subject to several
global constraints. Maximum thermodynamic performance is achieved by minimization of the entropy generated in the assemblies. The
boundary conditions are fixed heat flow per unit length and uniform and constant heat flux. The flow is assumed laminar and fully devel-
oped. Every geometrical detail of the optimized structure is deduced from the constructal law. Performance evaluation criterion is pro-
posed for evaluation and comparison of the effectiveness of different tree-shaped design heat exchangers. This criterion takes into account
and compare the entropy generated in the system with heat transfer performance achieved.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the more recent methods that have become estab-
lished in thermal engineering, thermodynamic optimization
has the objective of improving the global performance of the
system subject to specified global constraints. Thermo-
dynamic optimization is useful as a first step, for orientation
in the search of tradeoffs that govern the geometrical config-
uration of the system. Tree networks represent a new trend
in the optimization and miniaturization of heat transfer
devices [1–6], mass exchangers [7,8], chemical reactors [9],
and fuel cells [10–12]. Tree-shaped architectures promise a
more judicious use of the available space: higher densities
of heat and mass transfer and chemical reactions, and a
more uniform volumetric distribution of transport pro-
cesses. The fundamental study of the optimization of tree-
shaped architectures also sheds light on the common design
principles of engineered and natural flow systems.
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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In design, and in society in general, space is at a pre-
mium. This is why the interest in performance at smaller
and smaller scales is natural, and will continue. The mini-
aturization revolution means not only that the smallest
identifiable volume element (the elemental system [1]) is
becoming smaller, but also that larger and larger numbers
of such elements must inhabit the microscopic device that
they serve. The smaller the elements, and the larger their
number, the greater the complexity of the structure. In
design, miniaturization also means increasing complexity.
Packing the system with smaller, more powerful and more
numerous elemental systems is a necessary first step. The
challenge is not only to find geometric arrangements to
connect the currents that access the elemental systems,
but to optimize each connection such that, ultimately, each
design choice is reflected in an increase in performance at
the global level. To assemble more and more elements into
complex structures, and to optimize (with global objective
and space constraints) each connection means to construct.

Improvement in the global thermodynamic performance
of a system means the decrease in the irreversibility
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Nomenclature

A area (m2)
cp specific heat (J kg�1 K�1)
D channel diameter (m)
f Fanning friction factor
h heat transfer coefficient (W m�2 K�1)
k thermal conductivity (W m�1 K�1)
L length (m)
M dimensionless mass flow rate, M ¼

_mcp= pkNuA1=2
� �

_m mass flow rate (kg s�1)
Ns entropy generation ratio, N s ¼ T _Sgen=q
Nu Nusselt number, Nu = hiDi/k
n number of pairing levels
n0 number of central ducts
P pressure (Pa)
q heat flow (W)
q 0 heat flow per unit length (W m�1)
q00 heat flux (W m�2)
~q0 dimensionless heat flow per unit length,

~q0 ¼ q0=ðpkNuT Þ
~q00 dimensionless heat flux, ~q00 ¼ q00A1=2=ðpkNuT Þ

r radius (m)
_S gen entropy generation rate (W K�1)eSgen entropy generation number
T temperature (K)
DT temperature difference (K)
V volume (m3)
_W pumping power (W), _W ¼ _mDP=qeW dimensionless pumping power, eW ¼ _W V 2=

ðkNu=cpÞ2 m=qð ÞA5=2
h i

Greek symbols

m kinematic viscosity (m2 s�1)
q density (kg m�3)
s DT/T

Subscripts

i inlet or channel rank
m mean
n number of construction levels
o outlet
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(or entropy generation, exergy destruction) that character-
izes all the components and processes of the system. An
engineering flow system owes its irreversibility to several
mechanisms, most notably the flow of heat, fluid and elec-
tric current due to driving potentials, and against finite
resistances. The entropy generated by each current is pro-
portional to the product of the current times the driving
potential, i.e., proportional to the resistance overcome by
the current. In simple terms, the entire effort to optimize
thermodynamically the greater system rests on the ability
to minimize all internal flow resistances, together. Because
of constraints, the resistances compete against each other.

The route to improvements in global performance is by
balancing the reductions in the competing resistances.
Thermodynamically, this amounts to spreading the
entropy generation rate through the system in an optimal
way, so that the total irreversibility is reduced. Optimal
spreading of imperfection is achieved by properly sizing,
shaping and positioning the components. In the end, the
geometry structure of the system—its architecture—
emerges as a result of global thermodynamic optimization.

Tree-shaped flows have been studied extensively recently
[11–19]. Bejan [20], and da Silva et al. [21] proposed to use
dendritic flow architecture in the conceptual design of two-
stream heat exchangers. This is a new direction for the
development of the heat exchanger architecture. The ulti-
mate goal is to determine flow architectures that reach
simultaneously two objectives: (i) minimal global fluid resis-
tance (or pumping power), and (ii) minimal thermal resis-
tance. When the architecture is optimized for (i), the
result is a dendritic structure in which every geometric fea-
ture is uniquely determined. The corresponding thermal
resistance decreases as the total mass flow rate and pump-
ing power increase. When the objective is (ii), the optimal
architecture has radial ducts, not dendrites. The corre-
sponding fluid-flow resistance increases as the flow rate
increases and the global thermal resistance decreases.

In this paper we propose a new way of approaching the
geometric optimization of tree-shaped paths for fluid flow.
The objective is to determine flow architectures that reach
simultaneously two objectives: (i) minimal global entropy
generated, and (ii) maximum heat flow density. We con-
sider simple building block consisting of a few streams that
serve as tributaries or branches in a constrained space. A
larger stream with two branches (or two tributaries) forms
a construct shaped as T or Y. We also show that putting
together the optimized constructs it is possible to recon-
struct features of the much more complicated tree struc-
tures optimized so far. Next, we show a performance
evaluation criterion for evaluation of the performance of
new tree-shaped flow geometries through comparison of
the entropy generated in the system with the heat transfer
performance achieved.

2. Boundary condition: specified heat flow per unit length

2.1. Problem formulation

In order to calculate the entropy generation, we consider
an axially uniform duct of circular cross-section with a



Fig. 1. T-shaped assembly of round tubes.
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q 0 = const on its surface. An incompressible viscous fluid
with mass flow rate _mi and inlet temperature Ti enters the
channel with length Li. The flow is laminar and fully devel-
oped (Hagen–Poiseuille). The entropy generation with a
control volume of thickness dx along the channel is

d _Sgen ¼ _mds� dq
T þ DT

; ð1Þ

where

T ðxÞ ¼ T i þ 4St
DT
Di

x ð2Þ

is the variation of fluid temperature. In the case of incom-
pressible fluid, dh = cpdT, and using the thermodynamic
relation Tds = dh � mdp and dq ¼ _mdh, Eq. (1) can be writ-
ten as

d _Sgen

dx
¼ _mcp

dT
dx

DT
T ðT þ DT Þ þ

_m
qT

� dP
dx

� �
¼ _mcp

dT
dx

DT

T 2ð1þ sÞ
þ _m

qT
� dP

dx

� �
. ð3Þ

The first and second terms on the right-hand side of Eq. (3)
represent the entropy generation due to heat transfer across
finite temperature differences and friction, respectively.
Substituting Eq. (2) into Eq. (3) and assuming that
s� 1, Eq. (3) becomes

d _Sgen

dx
¼ _mcp4St

DT 2

Di

1

T i þ 4St DT
Di

x
� �2

þ _m

q T i þ 4St DT
Di

x
� � � dP

dx

� �
. ð4Þ

Integrating Eq. (4) along the length of the ith channel

_Sgen;i ¼
qiDT

T 2
i

1

1þ DT i
x

T i

� �þ 32 _m3
i fiLi

q2p2T iD5
i

ln 1þ DT i
x

T i

� �
DT i

x
T i

. ð5Þ

For simplicity, we assume that DT i
x=T i � 1, and

T iT 0 ffi T 2
i ffi T 2

0. In view of this that q 0 = hipDiDT =
pkNuDT, qi = q 0Li, and fi ¼ 16=Rei ¼ 4pqmDi= _mi, Eq. (5)
yields

_Sgen;i ¼
q0

pkNuT 2
0

q0Li þ
128m
qpT i

_m2
i

Li

D4
i

; ð6Þ

where T0 is the fluid flow temperature. For tree-shaped
heat exchanger, the overall entropy generated is

_Sgen ¼
Xn

i¼0

ni
_Sgen;i

¼ q0

T 2
0pkNu

Xn

i¼0

niq0Li þ
128m
qpT 0

Xn

i¼0

ni _m2
i

Li

D4
i

; ð7Þ

where q ¼
Pn

i¼0niq0Li is the overall heat flow. Eq. (7) can be
presented in dimensionless form as follows:
T 0
_Sgen

q0A1=2
� eS gen

¼ q0

pkNuA1=2T 0

Xn

i¼0

niLi þ
128m

qpq0A1=2

Xn

i¼0

ni _m2
i

Li

D4
i

ð8Þ

or

T 0
_Sgen

q0A1=2
� eS gen

¼ ~q0

A1=2

Xn

i¼0

niLi þ
128m

qp2~q0T 0kNuA1=2

Xn

i¼0

ni _m2
i

Li

D4
i

. ð9Þ
2.2. Laminar flow in a T-shaped assembly of tubes—first

construct

Consider first the case of incompressible flow through
the T-shaped structure, Fig. 1, for which n = 1, ni = 2n�i =
21�i, _mi ¼ 2i _m0, _m ¼ 2n _m0 ¼ 2 _m0. The flow is laminar and
fully developed (Hagen–Poiseuille). The total volume occu-
pied by the tubes is fixed,

V ¼
X

ni
p
4

D2
i Li ¼

p
4
ð2D2

0L0 þ D2
1L1Þ ¼ const. ð10Þ

Fixed is also the total space occupied by the planar
structure,

A ¼ ð4L0Þð2L1Þ ¼ 8L0L1 ¼ const. ð11Þ

The objective is to minimize the entropy generation num-
ber, Eq. (9). This is achieved geometrically, by selecting
the proper aspect ratios that define the architecture
(D1/D0, L1/L0). Since the first term in the right-hand side
of Eq. (9) does not depend on D1/D0, the optimization of
the ‘‘internal’’ aspect ratio D1/D0 gives the well know result
of D1/D0 = 21/3, known as Murray’s law [2]. This is another
confirmation of the principle of minimum total flow
resistance subject to the volume constraint. This robust
result related to the aspect ratios Di = 2i/3D0 will be used
‘‘a priori’’ in all subsequent analyses. Thus, Eq. (9) yields

eS gen ¼
~q0

A1=2

X1

i¼0

21�iLi þ
128m

qp2~q0T 0kNuA1=2

X1

i¼0

21�i _m2
i

Li

D4
i

;

ð12aÞ



Fig. 2. The variation of eLopt and popt versus M�
1.
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or

eS gen ¼
~q0

A1=2
L0ð2þ eLÞ þ 128m _m2

qp2~q0T 0kNuA1=2

L0

2D4
0

ð1þ 2�1=3eLÞ.
ð12bÞ

The value of D0 is defined from the constraints:

A ¼ 8L0L1 ¼ 8L2
0
eL ¼ const; L0 ¼

A1=2

23=2eL1=2
; eL ¼ L1=L0

and

V ¼ pL0D2
0

2
ð1þ 2�1=3eLÞ ¼ const.

Accordingly,

D4
0 ¼

4V 2

p2L2
0ð1þ 2�1=3eLÞ2 ¼ 32V 2

p2A

eL
ð1þ 2�1=3eLÞ2 ð13Þ

and Eq. (12) becomes

eSgen ¼
~q0

23=2

ð2þ eLÞeL1=2
þ p2mkNuA2M2

21=2qc2
p~q
0T 0V 2

ð1þ 2�1=3eLÞ3eL3=2
ð14aÞ

or

eSgen

23=2

~q0
� eS�gen ¼

ð2þ eLÞeL1=2
þ BM2 ð1þ 2�1=3eLÞ3eL3=2

; ð14bÞ

where B ¼ 2p2mkNuA2

qc2
pT 0V 2~q02

. There are two limiting cases:

(i) M* = BM2� 1, when
Fig. 3. Flow of tree-shaped streams distributed over a square area.
eS �gen ¼
ð2þ eLÞeL1=2

; ð15Þ

and the minimization of eS �genðdeS �gen=deL ¼ 0Þ subject
to constraints A and V yields the ratio eLopt ¼ 2.
(ii) M* = BM2� 1, when
eS �gen ¼ M� ð1þ 2�1=3eLÞ3eL3=2
; ð16Þ

and the minimization of eS �gen yields the ratioeLopt ¼ 21=3. The same result was obtained in Ref.
[13] from the principle of minimum global flow resis-
tance. The variation of eLopt versus M* can be pre-
sented as eLopt ¼ 2p, where the variation of p versus
M* is shown in Fig. 2 (lower curve).
Fig. 3 shows one tree-shaped stream distributed over a
square area. This configuration is designed from the princi-
ple of minimal global flow resistance. The numbers and
flow rates are ordered as

ni ¼ 2n�i; _mi ¼ 2i _m0; i ¼ 0; 1; . . . ; n ð17Þ
The lengths are obeyed the length-doubling rule by writing
approximately [21]

Li ¼ 2i=2L0 ð18Þ
and

L0 ¼
A1=2

2 nþ2ð Þ=2
; D0 ¼

23=2�n=4V 1=2

p1=2A1=4S1=2
1

.

For this case, the entropy generation number eS gen, Eq. (9),
becomes

eS gen ¼ ~qq0 þ p2mkNuA2

qc2
p~q
0T 0V 2

M2 S3
1

2n=2
; ð19aÞ

eS gen

~q0
¼ ~qþ B1M2 S3

1

2n=2
; ð19bÞ

oreS gen

~q0
¼ 2 n�2ð Þ=2S2 þ B1M2 S3

1

2n=2
; ð19cÞ

where

q

q0A1=2
� ~q ¼ 2 n�2ð Þ=2S2; ð19dÞ

is the overall heat flow, and



Fig. 5. Performance characteristic of tree-shaped flow distribution, Fig. 3,
for fixed mass flow rate (q 0 = const).

V.D. Zimparov et al. / International Journal of Heat and Mass Transfer 49 (2006) 1619–1630 1623
S1 ¼
Xn

i¼0

2i=6 ¼ 2 nþ1ð Þ=6 � 1

21=6 � 1
;

S2 ¼
Xn

i¼0

2�i=2 ¼ 2� nþ1ð Þ=2 � 1

2�1=2 � 1
; B1 ¼

p2mkNuA2

qc2
p~q
02 T 0V 2

.

Eq. (19c) shows how eS gen varies with M and n, and is to
be used in the case of specified M. Fig. 4 shows the varia-
tion of entropy generation number eS gen=~q0 versus complex-
ity, n and M�

1, where M�
1 ¼ B1M2. The increase of the

number of branches increases the entropy generated in
the system. At the same time, however, overall heat flow,
Eq. (19d), increases as well. To compare the entropy gener-
ated in the system with the heat transfer performance
achieved in the tree-shape design, we rearrange Eq. (19b)
in the formeS gen

~q0~q
¼ N s

~q0
� N �s ¼ 1þ 2B1M2 S3

1

2nS2

; ð20Þ

and define the ratio N s ¼ eS gen=~q as a new performance
evaluation criterion. The smaller Ns the better performance
of the tree-shape flow design.

Eq. (20) presents the variation of Ns with M and n, and
is to be used in the case of specified M. Fig. 5 (upper part)
shows the variation of entropy generation ratio N s=~q0 ver-
sus complexity, n, and M�

1. The entropy generation ratio
does not depend on the complexity when M�

1 � 1 and takes
the constant value. When M�

1 is on the order of unity or
greater, the entropy generation ratio depends on the ratioeS ¼ 2�nS3

1=S2, Fig. 5 (lower part). Several features can be
recognized from Fig. 5: (i) the entropy generation ratio
has a maximum for n ffi 5, Fig. 5 (upper part); (ii) for values
of n in the range 0 6 n 6 14, the best performance gives the
design with n = 0; (iii) whereas for n > 14, the greater com-
plexity the higher returns, Fig. 5 (lower part).

In the case of fixed pumping power, eW ¼ const, Eq.
(19c) can be transformed in the form
Fig. 4. The variation of entropy generation of tree-shaped flow distribu-
tion, Fig. 3, for fixed mass flow rate (q 0 = const).
eS gen

~q0
¼ 2 n�2ð Þ=2S2 þ B1

eW
p3
; ð21Þ

where eW ¼ 2�n=2p3S3
1M2 [21]. Fig. 6 shows the variation of

entropy generation number, eS gen, versus complexity, n, andeW �
1, where eW �

1 ¼ B1
~W =p3. As seen, the effect of complexity
Fig. 6. The variation of entropy generation of tree-shaped flow distribu-
tion, Fig. 3, for fixed pumping power (q 0 = const).



Fig. 7. Performance characteristic of tree-shaped flow distribution, Fig. 3,
for fixed pumping power (q 0 = const).
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on ~Sgen almost disappears for high pumping power avail-
able. For this case, entropy generation ratio, N �s yields

eN �s ¼ 1þ 2B1

p3

~W

2n=2S2

. ð22Þ

Fig. 7 shows the beneficial effect of complexity n on the var-
iation of entropy generation ratio, eN �s , versus dimension-
less pumping power W �

1, where W �
1 ¼ B1

eW =p3. In this
case, the performance of the tree-shaped heat exchanger
is completely different than that in the previous case. For
a fixed pumping power level, the bigger complexity the bet-
ter performance of heat exchanger.

2.3. Y-shaped assembly in a circle sector

The next problem is Y-shaped construct of two L0, and
one L1 tubes occupying the fixed area A of the circle sector
of angle a, Fig. 8. The geometry of the Y-shaped construct
Fig. 8. Y-shaped assembly occupying a fixed area of a circle sector.
depends on the radial position of the node (i.e., the length
L1), or the angle b. Both L0 and L1 vary with b, when r is
fixed:

L0 ¼ r
sin a

4

� �
sin b

¼ r
sin p

2n0

� �
sin b

; ð23Þ

L1 ¼ r cos
a
4

� �
� r

sin a
4

� �
tan b

¼ r cos
p

2n0

� �
� r

sin p
2n0

� �
tan b

; ð24Þ

eL ¼ L1=L0 ¼
sin b

tan p
2n0

� �� cos b; ð25Þ

a ¼ 2p
n0

, A ¼ pr2

n0
, and n0 is the number of tubes leaving the

centre. For this case, the expression, Eq. (12b), becomes

p1=2

~q0
N s � N �s

¼
n1=2

0 sin p
2n0

� �
sin b

2þ sin b

tan p
2n0

� �� cos b

24 35þ B2M2n3=2
0

�
sin3 p

2n0

� �
sin3 b

1þ 2�1=3 sin b

tan p
2n0

� �� cos b

24 358<:
9=;

3

;

ð26Þ

where

B2 ¼
16pmkNuA2

qc2
pT 0V 2 ~q02

; D4
0 ¼

4V 2 sin2 b

p2r2 sin2 p
2n0

� �
1þ 2�1=3eL� �2

.

The limiting cases are:

(i) M�
2 ¼ B2M2 � 0, when
N �s ¼
n1=2

0 sin p
2n0

� �
sin b

2þ sin b

tan p
2n0

� �� cos b

24 35. ð27Þ

The optimal angle of confluence is bopt = p/3 rad (60�)
regardless of n0, whereas eLopt depends on n0: n0 = 3,eLopt ¼ 1; n0 = 5, ~Lopt ¼ 2:165; n0 = 10, eLopt ¼ 4:967.
(ii) M�
2 ¼ B2M2 � 0, when
N �s ¼B2M2n3=2
0

sin3 p
2n0

� �
sin3 b

1þ2�1=3 sinb

tan p
2n0

� �� cosb

24 358<:
9=;

3

ð28Þ
and the entropy minimization effort is the expression
R n0;bð Þ¼ n3=2
0

sin3 p
2n0

� �
sin3 b

1þ2�1=3 sinb

tan p
2n0

� �� cosb

24 358<:
9=;

3

.

ð29Þ
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For this limiting case, the optimal angle of confluence is
bopt = 0.654 rad (37.47) regardless of n0, whereas eLopt

depends on n0: n0 = 3, eLopt ¼ 1; n0 = 5, eLopt ¼ 2:165;
n0 = 10, eLopt ¼ 4:967. The same result was obtained in
[18] from the principle of minimum global flow resistance.
Fig. 9 shows how bopt and eLopt vary with M�

2.
Disc-shaped tree flow structure was optimized in [15] for

minimum overall flow resistance. The numbers and flow
rates are ordered as follows:

ni ¼ 2n�in0; _mi ¼ 2i�n _m
n0

; i ¼ 0; 1; . . . ; n ð30Þ

The lengths are presented in dimensionless form as

L̂i ¼ Li=R; ð31Þ
where

R ¼ A1=2

p1=2

and

D0 ¼
V 1=2S�1=2

3

p1=4A1=4n1=2
n 2ðn�2Þ=2

.

For this design, the entropy generation number, Eq. (9),
yields

eS gen ¼
~q0n0

p1=2
2nS4 þ

32p1=2mkNuA2

qc2
pT 0~q0V 2

n0M2S3
3 ð32Þ

or

p1=2

~q0n0

eS gen � eS �gen ¼ 2nS4 þ B3M2S3
3; ð33Þ

where

S3 ¼
Xn

i¼0

2�i=3L̂i; S4 ¼
Xn

i¼0

2�iL̂i; B3 ¼
32pmkNuA2

qc2
pT 0~q0

2 V 2
.

Fig. 9. The variations of bopt and eLopt versus the mass flow rate
(q 0 = const).
The overall heat flow is

q ¼ 2nn0q0
A1=2

p1=2

Xn

i¼0

2�iL̂i ¼ 2nn0q0
A1=2

p1=2
S4

or

~q � p1=2q

q0A1=2n0

¼ 2nS4. ð34Þ

Eq. (33) presents the variation of eS �gen with M and n, the
case of fixed mass flow rate, M = const. Fig. 10 shows the
variation of eSgen versus n and M�

3 ¼ B3M2. As seen, for
small values of M�

3 the entropy generation increases gra-
dually with the increase of complexity, whereas for high
values of M�

3, there is an optimal number of branches nopt

for minimal entropy generation of the system.
To compare the entropy generated in the system and

heat transfer performance achieved in the tree-shape
design, we rearrange Eq. (33) in the form

p1=2

~q0n0

eS gen

~q
� ~N �s ¼ 1þ B3M2 S3

3

2nS4

. ð35Þ

Eq. (35) gives the variation of eN s with M and n, the case of
fixed mass flow rate, M = const. Fig. 11 shows the varia-
tion of entropy generation ratio N �s versus n and
M�

3 ¼ B3M2, for n0 = 3. For M�
3 � 1, the entropy genera-

tion ratio does not depend on the complexity and takes
the constant value. When M�

3 is of the order of unity or
greater, the entropy generation ratio gradually diminishes
with the increase of complexity, and the bigger complexity
the better performance of the tree-shape flow design.

In the case of fixed pumping power, eW ¼ const, Eq. (33)
yields

p1=2

~q0n0

eS gen � eS �gen ¼ 2nS4 þ
B3

n0p3=2

eW
2nþ3

; ð36Þ
Fig. 10. The variation of entropy generation of disc-shaped tree flow
distribution for fixed mass flow rate (q 0 = const).



Fig. 13. Performance characteristic of disc-shaped tree flow distribution
for fixed pumping power (q 0 = const).

Fig. 11. Performance characteristic of disc-shaped tree flow distribution
for fixed mass flow rate (q 0 = const).
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whereeW ¼ p3=22nþ3n0S3
3M2. ð37Þ

Fig. 12 shows the variation of entropy generation numbereS �gen versus complexity n and W �
3, where W �

3 ¼ B3
eW =

23p3=2n0

� �
. As seen, an envelope curve exists which gives

the optimal n for any W �
3 fixed. To compare the entropy

generated in the system and heat transfer performance
achieved in the tree-shape design, we rearrange Eq. (36)
in the form

p1=2

~q0n0

eS gen

~q
� N �s ¼ 1þ

eW �
3

22nS4

. ð38Þ

Fig. 13 shows the variation of N �s with W �
3 and n. An

remarkable trend can be recognized from the curves
depicted. An defined number of channels (n = 7–8) exist
Fig. 12. The variation of entropy generation of disc-shaped tree flow
distribution for fixed pumping power (q 0 = const).
that gives the maximal possible performance for this partic-
ular tree-shape flow design.

3. Boundary condition: specified heat flux

3.1. Problem formulation

In order to calculate the entropy generation, we consider
an axially uniform duct of circle cross-section with a uni-
form heat flux, q00 = const, on its surface. An incompress-
ible viscous fluid with mass flow rate _mi and inlet
temperature Ti enters the channel with length Li. The flow
is laminar and fully developed (Hagen–Poiseuille) and the
entropy generated in the ith channel is

_Sgen;i ¼
qiDT

T 2
i

1

1þ DT i
x

T i

� �þ 32 _m3
i fiLi

q2p2T iD5
i

ln 1þ DT i
x

T i

� �
DT i

x
T i

. ð5Þ

Assuming again that DT i
x=T i � 1, and T iT 0 ffi T 2

i ffi T 2
0. In

view of this that q00 = hiDT = kNuDT/Di, qi = q00pDiLi,
and fi ¼ 16=Rei ¼ 4pqmDi= _mi, Eq. (5) yields

_Sgen;i ¼
q00

kNuT 2
0

qiDi þ
128m
qpT i

_m2
i

Li

D4
i

. ð39Þ

For tree-shaped heat exchanger, the overall entropy gener-
ated is

_Sgen ¼
Xn

i¼0

ni
_Sgen;i ¼

q00
2

T 2
0kNu

Xn

i¼0

nipD2
i Li þ

128m
qpT 0

Xn

i¼0

ni _m2
i

Li

D4
i

or

_Sgen ¼
Xn

i¼0

ni
_Sgen;i ¼

4q002

T 2
0kNu

V þ 128m
qpT 0

Xn

i¼0

ni _m2
i

Li

D4
i

; ð40Þ

where q ¼
Pn

i¼0niq00pDiLi is the overall heat flow. Eq. (40)
can be presented in dimensionless form as
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T 0
_Sgen

q00A
� ~Sgen ¼

4q00V
kNuT 0A

þ 128m
qpAq00

Xn

i¼0

ni _m2
i

Li

D4
i

;

eS gen ¼
4p~q00V

A3=2
þ 128m

qp2kNuT 0~q00A
1=2

Xn

i¼0

ni _m2
i

Li

D4
i

;

or

eS gen ¼
4p~q00V

A3=2
1þ 32mA

qp3VkNuT 0~q002
Xn

i¼0

ni _m2
i

Li

D4
i

 !
. ð41Þ
3.2. Laminar flow in a T-shaped assembly of tubes—first

construct

Consider again the case of incompressible flow through
the T-shaped structure, Fig. 1, for which n = 1,
ni = 2n�i = 21�i, _mi ¼ 2i _m0, _m ¼ 2n _m0 ¼ 2 _m0. The flow is
laminar and fully developed (Hagen–Poiseuille) with the
same constraints for total volume and total space occupied.
The objective is to minimize the entropy generation ratio,
which means to minimize the expression in the brackets
of Eq. (41),

R ¼ 1þ 32mA
qp3VkNuT 0~q002

Xn

i¼0

ni _m2
i

Li

D4
i

. ð42Þ

For this particular case, R becomes

R ¼ 1þ 16mkNuA2

qc2
ppVT 0~q002

M2 L0

D4
0

þ 2
L1

D4
1

� �
or

R ¼ 1þ BM2 L0

D4
0

þ 2
L1

D4
1

� �
; ð43Þ

where B ¼ 16mkNuA2

qc2
ppVT 0~q002

. There are two limiting cases:

(i) M* = BM2� 1, when R = 1, and the entropy gener-
ation number cannot be minimized;

(ii) M* = BM2� 1, when
R ¼ M� L0

D4
0

þ 2
L1

D4
1

� �
ð44Þ

and the minimization of R yields the well known
result [13] ~Dopt ¼ 21=3 and eLopt ¼ 21=3.
The entropy generation number, Eq. (41), for tree-
shaped stream distributed over a square area, Fig. 2, yields

eS gen ¼
4pV ~q00

A3=2
1þ pmkNuA7=2M2

4qc2
pT 0V 3~q002

S3
1

2n=2

 !

or

eS genA3=2

4pV ~q00
¼ eS�gen ¼ 1þ B4M2 S3

1

2n=2
; ð45Þ
where

B4 ¼
pmkNuA7=2

4qc2
pT 0V 3~q002

; S1 ¼
Xn

i¼0

2i=6 ¼ 2 nþ1ð Þ=6 � 1

21=6 � 1
.

The overall heat flow is

q ¼
Xn

i¼0

niq00pDiLi ¼ q00A1=4p1=2V 1=22ðnþ2Þ=4 S5

S1=2
1

;

or

qA3=4

p1=221=2q00AV 1=2
¼ ~qA3=4

p1=221=2V 1=2
� ~q� ¼

2n=4S5

S1=2
1

; ð46Þ

where ~q ¼ q
q00A, and S5 ¼

Pn
i¼02�i=6 ¼ 2�ðnþ1Þ=6�1

2�1=6�1
.

Eq. (45) is to be used in the case of fixed mass flow,
M = const. If the pumping power is fixed, eW ¼ const,
Eq. (45) can be transformed in the formeS genA3=2

4pV ~q00
¼ eS �gen ¼ 1þ B4

eW
p3
; ð47Þ

where eW ¼ 2�n=2p3S3
1M2. The entropy generation ratio,

N s ¼ eS gen=~q, yields

N s ¼
4p1=2V 1=2~q00

A3=4
2ðnþ2Þ=4 S1=2

1

S5

þ p2mkNuA7=2M2

qc2
pT iV 3~q002

S7=2
1

2ð3nþ10Þ=4S5

 !

or

N sA
3=4

4p1=2V 1=2~q00
¼ eN �s ¼ 2ðnþ2Þ=4 S1=2

1

S5

þ B5M2 S7=2
1

2ð3nþ10Þ=4S5

; ð48Þ

where

B5 ¼
p2mkNuA7=2

qc2
pT 0V 3~q002

; S5 ¼
Xn

i¼0

2�i=6 ¼ 2�ðnþ1Þ=6 � 1

2�1=6 � 1
;

S1 ¼
Xn

i¼0

2i=6 ¼ 2ðnþ1Þ=6 � 1

21=6 � 1
.

Eq. (48) presents the case when mass flow rate is fixed,
M = const. Fig. 14 shows the variation of entropy genera-
tion ratio eN �s versus complexity, n, and M�

5 ¼ B5M2. In the
second case, pumping power fixed, eW ¼ const, Eq. (48) can
be transformed in the form

N sA
3=4

4p1=2V 1=2~q00
¼ eN �s ¼ 2ðnþ2Þ=4 S1=2

1

S5

þ B5
eW

p3

S1=2
1

2ðnþ10Þ=4S5

or

N sA
3=4

4p1=2V 1=2~q00
¼ ~N �s ¼ 2ðnþ2Þ=4 þ B5

~W

p32ðnþ10Þ=4

� �
S1=2

1

S5

. ð49Þ

Fig. 15 shows the variation of entropy generation ratio eN �s
versus complexity n and W �

5.
Two very important conclusions can be derived from

Figs. 12 and 14: (i) in both cases, an envelope curve exists
which defines the best design configuration (complexity)
according to the constraint—fixed M, or fixed eW ; (ii) for



Fig. 15. Performance characteristic of tree-shaped flow distribution,
Fig. 3, for fixed pumping power (q00 = const).

Fig. 14. Performance characteristic of tree-shaped flow distribution,
Fig. 3, for fixed mass flow rate (q00 = const).
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values of M�
5 or ð eW �

5Þ < 1, the best performance gives
design with n = 1, not n = 0.

3.3. Y-shaped assembly in a disc-sector area

Consider again the case of incompressible flow through
the Y-shaped construct of two L0 tubes and one L1 tube
occupying the fixed area of the circle sector of angle a,
Fig. 8. The flow is laminar and fully developed (Hagen–
Poiseuille) with the same constraints for total volume and
total space occupied. The objective is to minimize the
entropy generation number, which means to minimize R,
Eq. (38). We continue to maintain Di = 2i/3D0, the princi-
ple of minimum total flow resistance subject to the volume
constraint, confirmed in the previous analysis. For this
case, Eq. (42) becomes
R ¼ 1þ BM2
sin3 p

2n0

� �
sin3 b

1þ 2�1=3 sin b

tan p
2n0

� �� cos b

24 358<:
9=;

3

;

ð50Þ
where B ¼ 8mkNuA7=2

qcpp1=2V 3T 0~q002
. There are two limiting cases:

(i) M* = BM2� 1, when R = 1, and the entropy gener-
ation number cannot be minimized;

(ii) M* = BM2� 1, when
R ¼ BM2
sin3 p

2n0

� �
sin3 b

� 1þ 2�1=3 sin b

tan p
2n0

� �� cos b

24 358<:
9=;

3

. ð51Þ
The result of the optimization process is bopt = 0.654 rad
(37.47). The same result was obtained in [18] from the prin-
ciple of minimum global flow resistance.

For disc-shaped tree flow structure optimized in [15]
from the principle of minimal global flow resistance, the
entropy generation number eSgen, Eq. (41), yields

eS gen ¼
4p~q00V

A3=2
1þ B6n0M22nS3

3

� �
or

A3=2

4p~q00V
eS gen � ~S�gen ¼ 1þ B6n0M22nS3

3; ð52Þ

where B6 ¼ 2mkNuA7=2

p1=2qc2
pT 0V 3~q002

, S3 ¼
Pn

i¼02�i=3L̂i.

Eq. (52) represents the variation of eS �gen with M and n,
the case of fixed mass flow rate (M = const) for particular
n0. For disc-shaped tree flow structure optimized in [15] for
minimum overall flow resistance, the entropy generation
ratio Ns, becomes

n1=2
0 A3=4

2p3=4V 1=2

N s

~q00
� N �s ¼

S1=2
3

2n=2S6

þ B6n0M2 2n=2S7=2
3

S6

; ð53Þ

where S3 ¼
Pn

i¼02�i=3L̂i, and S6 ¼
Pn

i¼02�2i=3L̂i.
Eq. (53) represents the variation of N �s with M and n, the

case of fixed mass flow rate (M = const), for particular n0.
Fig. 16 shows the variation of entropy generation ratio N �s
with complexity n and M�

6 ¼ n0B6M2, for n0 = 3. Two
trends can be seen: (i) for M�

6 < 1, the bigger the complexity
the better the performance with increasing returns; (ii) for
M�

6 > 1, the performance does not depend on the complex-
ity and the best choice is n = 0.

In the case of fixed pumping power, ~W ¼ const, Eq. (53)
becomes

N �s ¼
S1=2

3

2n=2S6

þ eW �
6

S1=2
3

2n=2S6

; ð54Þ

where eW ¼ p3=22nþ3n0S3
3M2, and eW �

6 ¼ B6
eW

23p3=2.



Fig. 17. Performance characteristic of disc-shaped tree flow distribution
for fixed pumping power (q00 = const).

Fig. 16. Performance characteristic of disc-shaped tree flow distribution
for fixed mass flow rate (q00 = const).
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Fig. 17 shows the variation of entropy generation ratio
N �s , versus complexity n, and eW �

6. In this case, the perfor-
mance does not depend on eW �

6 and increases with the
increase of the complexity with increasing returns.

4. Conclusions

In this paper we propose a new method for thermody-
namic optimization to several classes of simple flow sys-
tems consisting of T- and Y-shaped assemblies of ducts,
channels and streams. In each case, the objective was to
identify the geometric configuration that maximized per-
formance subject to several global constraints. The thermo-
dynamic performance maximization is achieved by
minimization of the entropy generated in the system. The
boundary conditions are fixed heat flow per unit length
(q 0 = const) and uniform and constant heat flux (q00 =
const). The flow is laminar and fully developed (Hagen–
Poiseuille).

The relatively simple constructs, and the various formu-
lation of the global performance maximization problem
were chosen intentionally in order to stress the most impor-
tant features in the method. The maximization of the ther-
modynamic performance in pure fluid flow, through the
minimization of the global flow resistance, is a particular
case of this method. The emergence of geometric structure
is a result of the consistent maximization of performance
subject to constraints and every detail of the optimal flow
geometry was a result of the pursuit of better global perfor-
mance subject to global constraint.

Another important feature illustrated by these examples
is the robustness of the optimized design for eD. The
optimal ratio of the channel thickness ðeD ¼ D1=D0Þ is
completely independent of the rest of the geometric para-
meters and global constraints. This simplifies the design
of future and more complex systems, and, at the same time,
insures a near-optimal performance of existing systems the
structures of which may deviate from the originally
intended design.

Throughout these series of examples we show that the
optimized geometry has the effect of ‘‘partitioning’’ opti-
mally certain features of the system. Optimal partitioning,
or optimal allocation of constrained quantities is a by-
product of the optimization of flow geometry. It is encoun-
tered every time global performance is maximized: optimal
allocation is another way of interpreting the special optimi-
zation of the flow arrangement, i.e., the optimal spreading

of imperfection (irreversibilities).
More fundamentally, the sequence in which the exam-

ples were presented in this paper holds an important mes-
sage for future applications of the method. We started
with these examples because they are the simplest, but they
can serve as a base of more complicated design configura-
tions. Moreover, the new criterion (pursuing two objectives
simultaneously) is an instrument for evaluating and com-
paring the performance characteristics of different design
configurations for the same global constraints.
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